Chemistry of 1,2-Thiaphosphole 2-Sulfides. III.¹⁾ Cycloaddition Reactions with Some Acetylenic Dienophiles and Generation of Phosphorin 1-Sulfides

Hideyuki Талака and Shinichi Мотокі*

Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162 (Received December 20, 1985)

Synopsis. 1,2-Thiaphosphole 2-sulfides reacted with dimethyl acetylenedicarboxylate or phenylacetylene to afford 1-phosphabarrelene 1-sulfides (1-phosphabicyclo[2.2.2]octa-2,5,7-triene 1-sulfides) via phosphorin 1-sulfides.

Previously, we reported that 1,2-thiaphosphole 2-sulfides 2 generated by the thermolysis of 2,9-dithia-1-phosphabicyclo[4.3.0]nona-3,7-diene 1-sulfides 1 underwent cycloaddition reactions with various ole-fins to afford the stable 1:1 adducts 4.0

Meanwhile, numerous studies have been devoted to the chemistry of phosphorin derivatives,²⁾ however, phosphorin 1-sulfides are little known because of their instability. Only one example was reported by Mathey et al. very recently. They treated 4,5-dimethyl-2-phenylphosphorin with an excess of sulfur in the presence of 2,3-dimethylbutadiene or dimethyl acetylenedicarboxylate (DMAD), and transiently formed phosphorin 1-sulfide was trapped as cycloadducts.^{3,4)}

In view of the recent investigation, we attempted the cycloaddition reactions of 1 (2) with acetylenic dienophiles and also expected the formation of the phosphorin 1-sulfides 6 from the adducts 5 by elimination of the bridged sulfur atom.

Results and Discussion

When the reaction of la—c with DMAD was carried out in refluxing benzene, l-phosphabarrelene l-sulfides 7a—c were obtained along with the other products 8a—c (Table 1). This interesting results are explained as follows. Initially formed cycloadducts 5 are unstable under the reaction conditions and produce intermediary phosphorin l-sulfides 6 by the elimination of the bridged sulfur atom. Subsequently, 6 react with DMAD to afford 7a—c as reported by Mathey et al.³⁾ (Scheme 1).

The elementary analyses and the mass spectra indi-

Table 1. Reactions of 1 with Acetylenic Dienophiles

Material	Diananhila	Reaction		Product							
	Dienophile	time/h		$Mp \theta_m/^{\circ}C^{a)}$	Yield/% ^{b)}		$Mp \theta_m/^{\circ}C^{a)}$	Yield/%b)			
la	DMAD	1	7a	237—239	72	8a	c)	82			
1b	DMAD	1	7b	202-204	59	8b	c)	70			
lc	DMAD	1.5	7c	199-201	74	8 c	103—105	61			
la	PhC=CH	2	lla	218-220	38	12a	203-205	36			
1b	PhC≡CH	2	11b	224—226	28	12b	180—182	54			
lc	PhC≡CH	2	llc	228-230	86	12c	258-260	13			

a) All the products decomposed at the melting points. b) The yield of products was based on 1. c) Oil.

Table 2. ¹³C NMR Spectral Data of 7 and 11 ($\delta(J_{CP}/Hz)$)

Compd	C(α-1)	$C(\alpha-2)$	C(\beta-1)	C(\beta-2)	$C(\gamma)$	$J_{\mathrm{C}(\alpha\text{-}1)\mathrm{P}}$	$J_{\mathrm{C}(\alpha ext{-}2)\mathrm{P}}$	$J_{ ext{C}(oldsymbol{eta ext{-2}}) ext{P}}$	$J_{\mathrm{C}(\gamma)\mathrm{P}}$
7a	147.3	139.9	145.7	161.1	59.9	64.7	57.4	2.4	29.3
7b	147.1	139.9	144.8	161.0	59.5	64.7	57.4	2.4	29.3
7c	138.5	139.7	160.2	160.4	58.9	67.1	57.4	9.8	30.5
lla	148.9	134.1	145.0	170.9	66.3	61.0	67.1	3.7	30.5
11b	148.8	134.1	144.8	170.9	66.3	61.0	67.1	3.7	30.5
11c	140.7	134.4	157.9	170.5	65.6	63.5	65.9	3.7	31.7

a) 7 and 11: $J_{C(\beta-1)P} \approx 0$

Table 3. ¹H and ¹³C NMR Spectral Data of **12** ($\delta(J/\text{Hz})$)

Compd	H(4)	H(5)	H(6)	$J_{{ m H}(4){ m H}(5)}$	$J_{\mathrm{H}(5)\mathrm{H}(6)}$	$J_{ m H(4)P}$	$J_{\mathrm{H}(5)\mathrm{P}}$	$J_{ m H(6)P}$	C(5)	C(6)	$J_{\mathrm{C}(5)\mathrm{P}}$	$J_{\mathrm{C}(6)\mathrm{P}}$
12a	6.41	4.28	3.75	4.5	10.0	2.5	14.5	14.0	50.7	53.6	2.5	48.8
12b	6.41	4.23	3.73	4.5	10.0	2.5	15.5	14.0	49.8	54.1	2.4	47.6
12c	_	4.16	3.78	_	8.0	_	22.0	14.5	47.0	52.0	4.9	48.8

cated that 7a-c were 1:1 adducts of 6 with DMAD and the structures were confirmed by the ¹H and ¹³C NMR spectral data. In the ¹H NMR spectrum of 7a, the methoxycarbonyl groups resonated at δ =3.43 (s, 6H) and 3.89 (s, 6H). The doublet at δ =8.26 (1H, J_{HP} = 30.0 Hz) was assigned to the olefinic $H(\beta-1)$ proton. The ¹³C NMR spectrum of 7a showed signals of the $C(\alpha-1)$ and $C(\alpha-2)$ olefinic carbons at $\delta=147.3$ ($J_{CP}=$ 64.7 Hz) and 139.9 (2×C, J_{CP} =57.4 Hz), respectively. The large C-P coupling constants suggest that these carbons are directly bonded to the phosphorus atom. The signals of the $C(\beta-1)$ and $C(\beta-2)$ carbons showed small C-P coupling constants $(J_{C(\beta-1)P} \simeq 0 \text{ Hz}, J_{C(\beta-2)P} =$ The signal of $C(\gamma)$ carbon appeared at 2.4 Hz). δ=59.9 and showed unusual large coupling constant $(J_{CP}=29.3 \text{ Hz})$. These spectral data are closely similar to those of the 1-phosphabarrelene 1-sulfide reported previously.3,5) The structures of 7b, c were determined similarly (Table 2).

On the other hand, the mass spectra indicated that **8a**—c were 1:1 adducts of **3** with DMAD and their ¹H NMR spectral data suggested that they would be 4*H*-thiin derivatives. However, rearranged 2*H*-thiin structures can not be excluded strictly.⁶

The reaction of 1 with an excess of phenylacetylene gave the corresponding phosphabarrelene sulfides 11a—c regioselectively. The orientation of phenyl group was determined by the ¹H NMR spectrum of 11b. In this spectrum, signals of one proton (δ =8.45, J_{HP} =30.0 Hz), three protons (CH₃), two sets of two protons (p-Tol-H), and seventeen protons were observed. The first signal was assigned to the H(β -1) and the remaining two protons attached to the barrelene skeleton should be linked to the C(α -2) carbon atom. Signals of the $H(\alpha-2)$ couldn't be distinguished from those of other aromatic protons. Similarly, the structures of 11a and 11c were determined.

Cycloadducts of the thiones 3 with phenylacetylene were not obtained in this case, however, the analytical and the mass spectral data of the other products 12ac indicated that the compounds were 1:1 adducts of 10 and the thiones 3. The ¹³C NMR spectrum of 12a showed a signal of the C(6) carbon at δ =53.6 with a large C-P coupling constant (I_{CP}=48.8 Hz), suggesting a direct bonding of the C(6)-P (Table 3).1) In the ¹H NMR spectra, H(4), H(5), and H(6) protons resonated at δ =6.41 (dd, J_{HH} =4.5 Hz, J_{HP} =2.5 Hz), 4.28 (ddd, J_{HH} =4.5, 10.0 Hz, J_{HP} =14.5 Hz), and 3.75 (dd, $J_{\text{HH}}=10.0\,\text{Hz}$, $J_{\text{HP}}=14.0\,\text{Hz}$), respectively. These spectral data are in accord with the proposed structures. The structures of 12b, c were determined similarly (Table In these cycloaddition reactions, phosphorin 3). sulfides 10 and α,β -unsaturated thiones 3 act as 2π - and 4π -electron components, respectively. Cycloadducts of this type did not form in the reaction of 1 and DMAD. From these results, it has been found that the sulfides 2 react with phenylacetylene more rapidly than the thiones 3, and 3 are trapped by the generating 10 rather than phenylacetylene.

The mass spectra of 12 show fragments of thiones 3 and the phosphorin 1-sulfides 10. So the preparation of the corresponding phosphorins 4 by the thermolysis of 12 in the presence of desulfurizing agent is now under investigation.

Experimental

All melting points are uncorrected. IR spectra were measured on a Hitachi Model 260-10 spectrometer. ¹H and

¹³C NMR spectra were recorded on a JEOL JNM-FX 100 spectrometer in CDCl₃ solution using Me₄Si as an internal standard (¹H; at 100 MHz, ¹³C; 25.05 MHz). ³¹P NMR spectra were recorded at 36.21 MHz on a JEOL FX-90A spectrometer in CDCl₃ solution using 85% H₃PO₄ as an external standard. Mass spectra were recorded on a Hitachi double focusing mass spectrometer (RMU-7M), operating at an ionizing potential of 70 eV. Elemental analyses were performed using a Yanaco Model MT-3 CHN corder. 2,9-Dithia-1-phosphabicyclo-[4.3.0]nona-3,7-diene 1-sulfides 1 were prepared according to the previously described method.¹⁰

General Procedure for the Reaction of the Phosphabicyclo Compounds 1 with Acetylenic Dienophiles: A solution of 1 (2 mmol) and DMAD (7 mmol) or phenylacetylene (18 mmol) in 5 cm³ of dry benzene was refluxed under a nitrogen atmosphere until 1 was consumed, as indicated by TLC. After evaporation of the solvent the residue was chromatographed on silica gel (Wakogel C-200) with benzene-ethyl acetate (10:1) or benzene-hexane (1:1) as an eluent to afford the products and were recrystallized from ethanol.

4,7-Diphenyl-2,3,5,6-tetrakis(methoxycarbonyl)-1-phosphabicyclo[2.2.2]octa-2,5,7-triene 1-Sulfide (7a): IR (KBr) 2970, 1740 (C=O), 1300, and 1260 cm⁻¹; 1 H NMR δ =3.43 (s, 6H, OCH₃), 3.89 (s, 6H, OCH₃), 7.22—7.62 (m, 8H, Ar–H), and 8.26 [d, 1H, J_{HP} =30.0 Hz, H(β -1)]; 31 P NMR δ =9.33 (d, J_{PH} =30.2 Hz); MS m/z 538 (M+, 52), 506 (M+—S, 35), 474 (15), 447 (506-COOCH₃, 14), 418 (11), 302 (M+—4COOCH₃, 37), 271 (34), and 93 (100). Found: C,60.38; H, 4.27; S, 6.09%. Calcd for C_{27} H₂₃O₈PS: C, 60.22; H, 4.30; S, 5.95%.

4-Phenyl-2,3,5,6-tetrakis(methoxycarbonyl)-7-*p*-tolyl-1-phosphabicyclo[2.2.2]octa-2,5,7-triene 1-Sulfide (7b): IR (KBr) 2960, 1740 (C=O), 1280, and 1240 cm⁻¹; ¹H NMR δ =2.39 (s, 3H, CH₃), 3.42 (s, 6H, OCH₃), 3.88 (s, 6H, OCH₃), 7.08—7.56 (m, 9H, Ar–H), and 8.22 [d, 1H, $J_{\rm HP}$ =30.0 Hz, H(β -1)]; MS m/z 552 (M⁺, 33), 520 (M⁺—S, 21), 488 (7), 461 (520-COO-CH₃, 9), 432 (10), 316 (M⁺—4COOCH₃, 39), 285 (19), and 93 (100). Found: C, 60.80; H, 4.45%. Calcd for C₂₈H₂₅O₈PS: C, 60.87; H, 4.56%.

2,3-Benzo-7-phenyl-9,10,11,12-tetrakis(methoxycarbonyl)-8-phosphatricyclo[6.2.2.0^{1,6}]dodeca-6,10,11-triene 8-Sulfide (7c): IR (KBr) 2970, 1730 (C=O), 1285, and 1250 cm⁻¹; 1 H NMR δ =2.86 (s, 4H, $^{-}$ CH₂CH₂ $^{-}$), 3.44 (s, 6H, OCH₃), 3.88 (s, 6H, OCH₃), and 6.96 $^{-}$ 7.60 (m, 9H, Ar–H); MS m/z 564 (M+, 70), 532 (M+ $^{-}$ S, 7), 500 (17), 473 (532-COOCH₃, 21), 444 (1), 328 (M+ $^{-}$ 4COOCH₃, 48), 297 (21), 239 (54), and 93 (100). Found: C, 61.41; H, 4.56%. Calcd for $C_{29}H_{25}O_8PS$: C, 61.70; H, 4.46%.

2,3-Bis(methoxycarbonyl)-4,6-diphenyl-4*H*-thiin (8a): IR (neat) 2975, 1740 (C=O), 1260, and 1230 cm⁻¹; 1 H NMR δ = 3.58 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 4.87 (d, 1H, J_{HH} = 6.0 Hz), 6.08 (d, 1H, J_{HH} =6.0 Hz), and 7.00—7.60 (m, 10H, Ar–H); MS m/z 366 (M+, 29), 334 (M+–S, 13), 307 (M+–COOCH₃, 100), and 289 (M+–Ph, 53).

2,3-Bis(methoxycarbonyl)-6-phenyl-4-p-tolyl-4H-thiin (8b): IR (neat) 2950, 1720 (C=O), 1250, and 1220 cm⁻¹; ¹H NMR δ =2.26 (s, 3H, CH₃), 3.62 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.83 (d, 1H, J_{HH} =6.0 Hz), 6.08 (d, 1H, J_{HH} =6.0 Hz), and 6.83—7.60 (m, 9H, Ar-H); MS m/z 380 (M+, 17), 348 (M+-S, 19), 321 (M+-COOCH₃, 100), and 289 (M+-p-Tol, 35).

2,3-Bis(methoxycarbonyl)-1-phenyl-9,10-dihydro-1H-4-thiaphenanthrene (8c): IR (KBr) 2950, 1740 (C=O), 1260, and 1240 cm⁻¹; ¹H NMR δ =2.18—2.92 (m, 4H, -CH₂CH₂-), 3.68 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.77 (s, 1H), and 7.12—7.48 (m, 9H, Ar-H); MS m/z 392 (M+, 30), 360 (M+-S, 13), 333 (M+-COOCH₃, 82), and 315 (M+-Ph, 100).

3,4,5,7-Tetraphenyl-1-phosphabicyclo[2.2.2]octa-2,5,7-triene 1-Sulfide (11a): 1 H NMR δ =6.48—7.78 [m, 22H, H(α -2) and Ar–H] and 8.49 [d, 1H, $J_{\rm HP}$ =30.0 Hz, H(β -1)]; MS m/z 458 (M+, 1), 395 (M+–PS, 5), 356 (10a, 75), 324 (10a–S, 70),

254 (10a-PhC≡CH, 100), and 102 (PhC≡CH, 72). Found: C, 81.08: H, 5.08%. Calcd for C₃₁H₂₃PS: C, 81.20; H, 5.06%.

7-*p*-Tolyl-3,4,5-triphenyl-1-phosphabicyclo[2.2.2]octa-2,5,7-triene 1-Sulfide (11b): 1 H NMR δ =2.42 (s, 3H, CH₃), 6.56—7.40 [m, 17H, H(α -2) and Ar-H], 7.28 (d, 2H, $J_{\rm HH}$ =8.0 Hz, p-Tol-H), 7.62 (dd, 2H, $J_{\rm HH}$ =8.0 Hz, $J_{\rm HP}$ =1.5 Hz, p-Tol-H), and 8.45 [d, 1H, $J_{\rm HP}$ =30.0 Hz, H(β -1)]; MS m/z 472 (M⁺, 10), 438 (M⁺-H₂S, 4), 409 (M⁺-PS, 12), 370 (10b, 100), 338 (10b-S, 98),268 (10b-PhC=CH, 83), and 102 (PhC=CH, 98). Found: C, 81.20; H, 5.23%. Calcd for C₃₂H₂₅PS: C, 81.33; H, 5.33%.

2,3-Benzo-7,10,11-triphenyl-8-phosphatricyclo[6.2.2.0^{1,6}]-dodeca-6,10,11-triene 8-Sulfide (11c): 1 H NMR δ =2.98 (s, 4H, -CH₂CH₂-), 5.88—6.40 (m, 2H, Ar-H), and 6.60—7.60 [m, 19H, H(α -2) and Ar-H]; 31 P NMR δ =8.43 (t, J_{PH} = 20.3 Hz); MS m/z 484 (M+, 11), 450 (M+-H₂S, 9), 421 (M+-PS, 21), 382 (10c, 25), 350 (10c-S, 27), 280 (10c-PhC=CH, 50), and 102 (PhC=CH, 100). Found: C, 81.83; H, 5.18; S, 6.26%. Calcd for C_{33} H₂₅PS: C, 81.79; H, 5.20; S, 6.62%.

3,5,7,8,10-Pentaphenyl-1-phospha-2-thiabicyclo[4.4.0]deca-3,7,9-triene 1-Sulfide (12a): ¹H NMR δ =3.75 [dd, 1H, J_{HH} =10.0 Hz, J_{HP} =14.0 Hz, H(6)], 4.28 [ddd, 1H, J_{HH} =4.5, 10.0 Hz, J_{HP} =14.5 Hz, H(5)], 6.32—6.60 (m, 2H), 6.41 [dd, 1H, J_{HH} =4.5 Hz, J_{HP} =2.5 Hz, H(4)], 6.72—7.52 (m, 22H), and 7.72—7.94 (m, 2H); ³¹P NMR δ =49.39 (dddd, J_{PH} =2.5, 14.0, 14.5, 36.0 Hz); MS m/z 580 (M⁺, 1), 356 (10a, 31), 324 (10a–S, 76), 254 (10a–PhC≡CH, 43), and 223 (3a–H, 100). Found: C, 78.52; H, 5.04; S, 11.03%. Calcd for C₃₈H₂₉PS₂: C, 78.59; H, 5.03; S, 11.04%.

5,10-Di-p-tolyl-3,7,8-triphenyl-1-phospha-2-thiabicyclo[4.4.0]-deca-3,7,9-triene 1-Sulfide (12b): 1 H NMR δ =2.26 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 3.73 [dd, 1H, $J_{\rm HH}$ =10.0 Hz, $J_{\rm HP}$ =14.0 Hz, H(6)], 4.23 [ddd, 1H, $J_{\rm HH}$ =4.5, 10.0 Hz, $J_{\rm HP}$ =15.5 Hz, H(5)], 6.32—7.44 [m, 22H, H(9) and Ar-H], 6.41 [dd, 1H, $J_{\rm HH}$ =4.5 Hz, $J_{\rm HP}$ =2.5 Hz, H(4)], and 7.75 (dd, 2H, $J_{\rm HH}$ =8.0 Hz, $J_{\rm HP}$ =2.5 Hz, p-Tol-H); MS m/z 608 (M+, 1), 370 (10b, 29), 338 (10b-S, 100), 268 (10b-PhC=CH, 34), and 237 (3b-H, 56). Found: C, 78.84; H, 5.51%. Calcd for C₄₀H₃₃PS₂: C, 78.91; H, 5.46%.

7,15,16-Triphenyl-5,6,13,14,15,15a-hexahydro-7a-phospha-8-thiadibenzo[a,j]naphthacene 7a-Sulfide (12c): ¹H NMR δ =2.04—2.20 (m, 4H, -CH₂-), 2.48—2.92 (m, 4H, -CH₂-), 3.78 [dd, 1H, J_{HH} =8.0 Hz, J_{HP} =14.5 Hz, H(6)], 4.16 [dd, 1H, J_{HH} =8.0 Hz, J_{HP} =22.0 Hz, H(5)], and 6.50—7.70 (m, 23H, Ar-H); MS m/z 632 (M⁺, 1), 382 (10c, 98), 350 (10c-S, 100), 280 (10c-PhC=CH, 91), and 249 (3c-H, 51). Found: C, 79.68; H, 5.18%. Calcd for C₄₂H₃₃PS₂: C, 79.72; H, 5.26%.

The authors wish to thank JEOL LTD. for measuring the ³¹P NMR spectra and also Mr. Yasuhiro Terauchi for technical assistance.

References

- 1) H. Yamaguchi, S. Kametani, T. Karakasa, T. Saito, and S. Motoki, *Tetrahedron Lett.*, **23**, 1263 (1982); T. Uchida, K. Kozawa, T. Saito, and S. Motoki, *Bull. Chem. Soc. Jpn.*, **57**, 1985; 1990 (1984); H. Tanaka, S. Kametani, T. Saito, and S. Motoki, *ibid.*, **58**, 667 (1985); H. Tanaka, T. Saito, and S. Motoki, *ibid.*, **59**, 59 (1986).
- 2) G. Märkl, Angew. Chem., Int. Ed. Engl., 5, 846 (1966) and later papers.
- 3) J.-M. Alcaraz and F. Mathey, J. Chem. Soc., Chem. Commun., 1984, 508.
- 4) J.-M. Alcaraz and F. Mathey, Tetrahedron Lett., 25, 4659 (1984).
- 5) G. Märkl and F. Lieb, Angew. Chem., Int. Ed. Engl., 7, 733 (1968).
- 6) E. T. Østensen, A. A.-A. Abdallah, S. H. Skaare, and M. M. Mishrikey, Acta Chem. Scand., Ser. B, 31, 496 (1977).